目录
2.2 家谱树谱——encoder or decoder is a problem
2.3.3 pipeline返回参数
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
今天介绍NLP自然语言处理的第六篇:文本生成(text-generation),在huggingface库内有13.4万个文本生成(text-generation))模型,当仁不让为最重要的task,当前主流的大语言模型,比如国外的llama3、gemma、Phi、GPT,国内的Qwen、Baichuan都属于这个任务。
二、文本生成(text-generation)
2.1 概述
生成文本是根据一段文本生成新文本的任务。例如,这些模型可以填充不完整的文本或释义。
2.2 家谱树谱——encoder or decoder is a problem
关于各家大语言模型(LLM)的原理、训练、部署、推理之前讲了非常多,本篇博文不再进行复述,如果需要的话可以翻我之前的博客,非常用心与详细。今天主要带大家看一下大语言模型(LLM)的家族树谱。
主要分为
- Encoder-Only,仅编码器模型:主要使用transformer的encode部分进行层层堆叠,多用于掩码任务,通过上下文决定缺失的内容,做填空任务。代表模型为大名鼎鼎的BERT,以及他的衍生品RoBERTa、DeBERTa、DistilBERT等,当然还有早期的FastText、Word2Vec等
- Encoder-Decoder联合体:将transformer的编码器和解码器结合使用,代表模型为GLM、T5、BART等
- Decoder-Only,仅解码器模型:主要使用transformer的decode部分,多用于生成型的任务,基于前面提供的信息,生成后面的内容。代表模型为GPT、BLOOM、Claude等
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
- model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
- tokenizer ( PreTrainedTokenizer ) — 管道将使用 tokenizer 来为模型编码数据。此对象继承自 PreTrainedTokenizer。
- modelcard(
str
或ModelCard
,可选) — 属于此管道模型的模型卡。- framework(
str
,可选)— 要使用的框架,"pt"
适用于 PyTorch 或"tf"
TensorFlow。必须安装指定的框架。- task(
str
,默认为""
)— 管道的任务标识符。- num_workers(
int
,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。- batch_size(
int
,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。- args_parser(ArgumentHandler,可选) – 引用负责解析提供的管道参数的对象。
- device(
int
,可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.device
或str
太- torch_dtype(
str
或torch.dtype
,可选) – 直接发送model_kwargs
(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16
,,torch.bfloat16
…或"auto"
)- binary_output(
bool
,可选,默认为False
)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。
2.3.2 pipeline对象使用参数
- text_inputs(
str
,List[str]
,List[Dict[str, str]],或List[List[Dict[str, str]]]
)— 需要完成的一个或多个提示(或一个提示列表)。如果传递了字符串或字符串列表,则此管道将继续每个提示。或者,可以传递“聊天”(以带有“role”和“content”键的字典列表的形式),或传递此类聊天的列表。传递聊天时,将使用模型的聊天模板对其进行格式化,然后再将其传递给模型。- return_tensors (
bool
,可选,默认为False
) — 是否在输出中返回预测的张量(作为标记索引)。如果设置为True
,则不返回解码后的文本。- return_text(
bool
,可选,默认为True
)— 是否在输出中返回解码后的文本。- return_full_text(
bool
,可选,默认为True
)— 如果设置为,False
则仅返回添加的文本,否则返回全文。仅当 return_text设置为 True 时才有意义。- clean_up_tokenization_spaces(
bool
,可选,默认为True
)—是否清理文本输出中可能出现的额外空格。- prefix(
str
,可选)— 添加到提示的前缀。- handle_long_generation(
str
,可选)— 默认情况下,此管道不处理长生成(以某种形式超出模型最大长度的生成)。- generate_kwargs(
dict
,可选)——传递给模型的生成方法的附加关键字参数(请参阅此处与您的框架相对应的生成方法)。
2.3.3 pipeline返回参数
- generated_text(
str
,出现时间return_text=True
)——生成的文本。- generated_token_ids(
torch.Tensor
或tf.Tensor
,当存在时return_tensors=True
)— 生成文本的标记 ID。
2.4 pipeline实战
本文实战方面只对pipeline的使用方法进行阐述,每家的模型都有自己的参数、范式,更详细的使用可以翻看我之前的博文,写的全面一些。这里介绍两种pipeline使用方法:
- 针对基础模型,直接返回补全的结果。
- 针对对话模型,它还可以接受一个或多个聊天,在这种情况下,pipeline将以聊天模式运行,并通过添加其响应来继续聊天。每个聊天都采用字典列表的形式,其中每个字典包含“role”和“context”键
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from transformers import pipeline
generator = pipeline(task="text-generation",model= "openai-community/gpt2" )
output=generator( "我不敢相信你做了这样的事 " , do_sample= False )
print(output)
generator = pipeline(task="text-generation",model= "HuggingFaceH4/zephyr-7b-beta" )
output=generator([{ "role" : "user" , "content" : "法国的首都是什么?用一个词回答。" }], do_sample= False , max_new_tokens= 2 )
print(output)
执行后,自动下载模型文件并进行识别:
2.5 模型排名
在huggingface上,我们将文本生成(text-generation)模型按下载量从高到低排序,总计13.5万个模型,可以说是huggingface上最多的任务类别了。下载排名第一的为GPT的第2代模型——gpt2,llama3、qwen2的小尺寸模型也有上榜。
三、总结
本文对transformers之pipeline的文本生成(text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本生成(text-generation)模型。
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《Transformers-Pipeline概述》
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
《Transformers-Pipeline 第一章:音频(Audio)篇》
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
《Transformers-Pipeline 第二章:计算机视觉(CV)篇》
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
【人工智能】Transformers之Pipeline(八):图生图(image-to-image)
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
【人工智能】Transformers之Pipeline(十五):总结(summarization)
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
《Transformers-Pipeline 第四章:多模态(Multimodal)篇》
【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)
【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)
【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)
【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)
文章转载遵循CC 4.0 BY-SA版权协议,来源于互联网: 【人工智能】Transformers之Pipeline(十八):文本生成(text-generation) | https://blog.csdn.net/weixin_48007632/article/details/142214070